Computation of the Ramsey Numbers $R(C_4, K_9)$ and $R(C_4, K_{10})$
نویسندگان
چکیده
The Ramsey number R(C4,Km) is the smallest n such that any graph on n vertices contains a cycle of length four or an independent set of order m. With the help of computer algorithms we obtain the exact values of the Ramsey numbers R(C4,K9) = 30 and R(C4,K10) = 36. New bounds for the next two open cases are also presented.
منابع مشابه
The crossing numbers of $K_{n,n}-nK_2$, $K_{n}\times P_2$, $K_{n}\times P_3$ and $K_n\times C_4$
The crossing number of a graph G is the minimum number of pairwise intersections of edges among all drawings of G. In this paper, we study the crossing number of Kn,n − nK2, Kn × P2, Kn × P3 and Kn × C4.
متن کاملThe Ramsey numbers of large trees versus wheels
For two given graphs G1 and G2, the Ramseynumber R(G1,G2) is the smallest integer n such that for anygraph G of order n, either $G$ contains G1 or the complementof G contains G2. Let Tn denote a tree of order n andWm a wheel of order m+1. To the best of our knowledge, only R(Tn,Wm) with small wheels are known.In this paper, we show that R(Tn,Wm)=3n-2 for odd m with n>756m^{10}.
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملOn the edge-connectivity of C_4-free graphs
Let $G$ be a connected graph of order $n$ and minimum degree $delta(G)$.The edge-connectivity $lambda(G)$ of $G$ is the minimum numberof edges whose removal renders $G$ disconnected. It is well-known that$lambda(G) leq delta(G)$,and if $lambda(G)=delta(G)$, then$G$ is said to be maximally edge-connected. A classical resultby Chartrand gives the sufficient condition $delta(G) geq frac{n-1}{2}$fo...
متن کامل$C_4$-free zero-divisor graphs
In this paper we give a characterization for all commutative rings with $1$ whose zero-divisor graphs are $C_4$-free.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1310.3017 شماره
صفحات -
تاریخ انتشار 2013